Direct observation of OH formation from stabilised Criegee intermediates.

نویسندگان

  • A Novelli
  • L Vereecken
  • J Lelieveld
  • H Harder
چکیده

The syn-CH3CHOO Criegee intermediate formed from the ozonolysis of propene and (E)-2-butene was detected via unimolecular decomposition and subsequent detection of OH radicals by a LIF-FAGE instrument. An observed time dependent OH concentration profile was analysed using a detailed model focusing on the speciated chemistry of Criegee intermediates based on the recent literature. The absolute OH concentration was found to depend on the steady state concentration of syn-CH3CHOO at the injection point while the time dependence of the OH concentration profile was influenced by the sum of the rates of unimolecular decomposition of syn-CH3CHOO and wall loss. By varying the most relevant parameters influencing the SCI chemistry in the model and based on the temporal OH concentration profile, the unimolecular decomposition rate k (293 K) of syn-CH3CHOO was shown to lie within the range 3-30 s(-1), where a value of 20 ± 10 s(-1) yields the best agreement with the CI chemistry literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms for the formation of organic acids in the gas-phase ozonolysis of 3-carene.

This paper describes experimental studies aimed at elucidating mechanisms for the formation of low-volatility organic acids in the gas-phase ozonolysis of 3-carene. Experiments were carried out in a static chamber under 'OH-free' conditions. A range of multifunctional acids-which are analogous to those observed from alpha-pinene ozonolysis-were identified in the condensed phase using gas chroma...

متن کامل

Reaction of Stabilized Criegee Intermediates from Ozonolysis of Limonene with Water: Ab Initio and DFT Study

The mechanism of the chemical reaction of H2O with three stabilized Criegee intermediates (stabCI-OO, stabCI-CH3-OO and stabCIx-OO) produced via the limonene ozonolysis reaction has been investigated using ab initio and DFT (Density Functional Theory) methods. It has been shown that the formation of the hydrogen-bonded complexes is followed by two different reaction pathways, leading to the for...

متن کامل

Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.

Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH3CHOO. IR excitation of selectively deuterated syn-CD3CHOO i...

متن کامل

Infrared absorption spectrum of the simplest Criegee intermediate CH2OO.

The Criegee intermediates are carbonyl oxides postulated to play key roles in the reactions of ozone with unsaturated hydrocarbons; these reactions constitute an important mechanism for the removal of unsaturated hydrocarbons and for the production of OH in the atmosphere. Here, we report the transient infrared (IR) absorption spectrum of the simplest Criegee intermediate CH2OO, produced from C...

متن کامل

Barrierless tautomerization of Criegee intermediates via acid catalysis.

The tautomerization of Criegee intermediates via a 1,4 β-hydrogen atom transfer to yield a vinyl hydroperoxide has been examined in the absence and presence of carboxylic acids. Electronic structure calculations indicate that the organic acids catalyze the tautomerization reaction to such an extent that it becomes a barrierless process. In contrast, water produces only a nominal catalytic effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 37  شماره 

صفحات  -

تاریخ انتشار 2014